ADM1030
http://onsemi.com
11
noisy environment, a capacitor of value up to 1000 pF may
be placed between the D+ and D inputs to filter the noise.
To measure DV
BE
, the sensor is switched between
operating currents of I and N ?I. The resulting waveform is
passed through a 65 kHz low-pass filter to remove noise,
then to a chopperstabilized amplifier that performs the
functions of amplification and rectification of the waveform
to produce a dc voltage proportional to DV
BE
. This voltage
is measured by the ADC to give a temperature output in
11-bit twos complement format. To further reduce the
effects of noise, digital filtering is performed by averaging
the results of 16 measurement cycles. An external
temperature measurement nominally takes 9.6 ms.
Layout Considerations
Digital boards can be electrically noisy environments and
care must be taken to protect the analog inputs from noise,
particularly when measuring the very small voltages from
a remote diode sensor. The following precautions should be
taken:
1. Place the ADM1030 as close as possible to the
remote sensing diode. Provided that the worst
noise sources such as clock generators,
data/address buses, and CRTs are avoided, this
distance can be 4 to 8 inches.
2. Route the D+ and D tracks close together, in
parallel, with grounded guard tracks on each side.
Provide a ground plane under the tracks if
possible.
3. Use wide tracks to minimize inductance and
reduce noise pick-up. 10 mil track minimum width
and spacing is recommended.
Figure 19. Arrangement of Signal Tracks
10 MIL
10 MIL
10 MIL
10 MIL
10 MIL
10 MIL
10 MIL
GND
D
D+
GND
4. Try to minimize the number of copper/solder
joints, which can cause thermocouple effects.
Where copper/solder joints are used, make sure
that they are in both the D+ and D path and at the
same temperature.
Thermocouple effects should not be a major
problem as 1癈 corresponds to about 200 mV, and
thermocouple voltages are about 3 mV/癈 of
temperature difference. Unless there are two
thermocouples with a big temperature differential
between them, thermocouple voltages should be
much less than 200 mV.
5. Place a 0.1 mF bypass capacitor close to the
ADM1030.
6. If the distance to the remote sensor is more than
8 inches, the use of twisted pair cable is
recommended. This will work up to about 6 to
12 feet.
7. For really long distances (up to 100 feet) use
shielded twisted pair such as Belden #8451
microphone cable. Connect the twisted pair to D+
and D and the shield to GND close to the
ADM1030. Leave the remote end of the shield
unconnected to avoid ground loops.
Because the measurement technique uses switched
current sources, excessive cable and/or filter capacitance
can affect the measurement. When using long cables, the
filter capacitor C1 may be reduced or removed. In any case
the total shunt capacitance should not exceed 1000 pF.
Cable resistance can also introduce errors. 1 W series
resistance introduces about 0.5癈 error.
Addressing the Device
ADD (Pin 13) is a three-state input. It is sampled, on
power-up to set the lowest two bits of the serial bus address.
Up to three addresses are available to the systems designer
via this address pin. This reduces the likelihood of conflicts
with other devices attached to the System Management Bus.
The ADM1030 Interrupt System
The ADM1030 has two interrupt outputs, INT
  and
THERM
. These have different functions. INT
 responds to
violations of software programmed temperature limits and
is maskable (described in more detail later).
THERM
 is intended as a fail-safe interrupt output that
cannot be masked. If the temperature is below the low
temperature limit, the INT
  pin will be asserted low to
indicate an out-of-limit condition. If the temperature
exceeds the high temperature limit, the INT
 pin will also be
asserted low. A third limit; THERM
  limit, may be
programmed into the device to set the temperature limit
above which the overtemperature THERM
  pin will be
asserted low. The behavior of the high limit and THERM
limit is as follows:
1. Whenever the temperature measured exceeds the
high temperature limit, the INT
 pin is asserted low.
2. If the temperature exceeds the THERM
 limit, the
THERM
 output asserts low. This can be used to
throttle the CPU clock. If the THERM
-to-Fan
Enable bit (Bit 7 of THERM
 behavior/revision
register) is cleared to 0, the fan will not run
full-speed. The THERM
 limit may be programmed
at a lower temperature than the high temperature
limit. This allows the system to run in silent mode,
where the CPU can be throttled while the cooling
fan is off. If the temperature continues to increase,
and exceeds the high temperature limit, an INT
 is
相关PDF资料
ADM1032ARZ-REEL IC TEMP MONITOR 85DEG 8SOIC
ADM1033ARQZ-RL7 IC THERM/FAN SPEED CTLR 16-QSOP
ADM1034ARQZ-REEL IC THERM/FAN SPEED CTRLR 16-QSOP
ADN8810ACPZ-REEL7 IC CURRENT SOURCE(12BIT) 24LFCSP
ADP2140ACPZ3328R7 IC REG DL BCK/LINEAR 10LFCSP
ADP5022ACBZ-6-R7 IC REG TRPL BCK/LINEAR 16WLCSP
ADP5041ACPZ-1-R7 IC REG TRPL BCK/LINEAR 20-LFCSP
ADP5042ACPZ-2-R7 IC REG TRPL BCK/LINEAR 20LFCSP
相关代理商/技术参数
ADM1031 制造商:AD 制造商全称:Analog Devices 功能描述:Intelligent Temperature Monitor and Dual PWM Fan Controller
ADM1031ARQ 功能描述:IC SENSOR 2-TEMP/FAN CTRL 16QSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 热管理 系列:- 标准包装:1 系列:- 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-40°C ~ 125°C,外部传感器 精确度:±2.5°C 本地(最大值),±5°C 远程(最大值) 拓扑:ADC,比较器,寄存器库 输出类型:2 线 SMBus? 输出警报:无 输出风扇:无 电源电压:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:SOT-23-8 供应商设备封装:SOT-23-8 包装:Digi-Reel® 其它名称:296-22675-6
ADM1031ARQ-ND 制造商:ON Semiconductor 功能描述:
ADM1031ARQ-REEL 功能描述:IC SENSOR 2-TEMP/FAN CTRL 16QSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 热管理 系列:- 标准包装:1 系列:- 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-40°C ~ 125°C,外部传感器 精确度:±2.5°C 本地(最大值),±5°C 远程(最大值) 拓扑:ADC,比较器,寄存器库 输出类型:2 线 SMBus? 输出警报:无 输出风扇:无 电源电压:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:SOT-23-8 供应商设备封装:SOT-23-8 包装:Digi-Reel® 其它名称:296-22675-6
ADM1031ARQ-REEL7 功能描述:IC SENSOR 2-TEMP/FAN CTRL 16QSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 热管理 系列:- 标准包装:1 系列:- 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-40°C ~ 125°C,外部传感器 精确度:±2.5°C 本地(最大值),±5°C 远程(最大值) 拓扑:ADC,比较器,寄存器库 输出类型:2 线 SMBus? 输出警报:无 输出风扇:无 电源电压:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:SOT-23-8 供应商设备封装:SOT-23-8 包装:Digi-Reel® 其它名称:296-22675-6
ADM1031ARQZ 功能描述:马达/运动/点火控制器和驱动器 2 CH TDM PWM FAN CTRL IC RoHS:否 制造商:STMicroelectronics 产品:Stepper Motor Controllers / Drivers 类型:2 Phase Stepper Motor Driver 工作电源电压:8 V to 45 V 电源电流:0.5 mA 工作温度:- 25 C to + 125 C 安装风格:SMD/SMT 封装 / 箱体:HTSSOP-28 封装:Tube
ADM1031ARQZ-R7 功能描述:IC SENSOR 2TEMP/FAN CTRL 16QSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 热管理 系列:- 标准包装:1 系列:- 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-40°C ~ 125°C,外部传感器 精确度:±2.5°C 本地(最大值),±5°C 远程(最大值) 拓扑:ADC,比较器,寄存器库 输出类型:2 线 SMBus? 输出警报:无 输出风扇:无 电源电压:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:SOT-23-8 供应商设备封装:SOT-23-8 包装:Digi-Reel® 其它名称:296-22675-6
ADM1031ARQZ-REEL 功能描述:板上安装温度传感器 2 CH TDM PWM FAN CTRL IC RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor